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Abstract: In 2012, National Institute of statistics of Rwanda conducted the 4
th

 population and housing census 

whereby the population projection was done about fertility and mortality .Based on the assessment of past 

mortality, it is assumed that life expectancy at birth in Rwanda will increase linearly up to 70 years  with  of course 

a significant decrease in infant mortality and under five mortality rates by the end of the projection period  

2032.Therefore,the forecasts results should be inaccurate as long as  the forecasting period becomes too big. 

Objective of this study was to apply Leslie matrix, Lee carter and ARIMA models in forecasting population 

dynamics in Rwanda. Leslie matrix model was used to determine the annual growth rate of female population 

which was r =2.33% .By ARIMA models, Forecasts showed a decreasing trend in IMR and U5MR from 2012 to 

2015. The results showed that models used had a higher predictive ability because of their small root mean square 

errors where RMSE was found to be 0.124456 for IMR and 0.068576 for under 5 mortality rates (‰). 

Keywords: Leslie matrix, Infant Mortality Rates, Under 5 Mortality Rates, Lee-Carter model, ARIMA models, 
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1. INTRODUCTION 

Leslie matrix models are useful tools in population dynamics to predict population growth. They are particularly suitable 

to describe the evolution of age structured population. These models can even be used to determine the evolution of 

human age pyramids (Gonze, 2015). 

This study aimed at applying Leslie, Lee carter and ARIMA models for projection of the population dynamics in Rwanda 

where the annual growth rate was determined by using Leslie matrix model and mortality rates were forecasted by 

ARIMA models. 

However, Population projections are inevitable tool for decision makers and planners. The government ministries, 

particularly health, education, transport, environment, social welfare and housing, constantly seek projections of future 

demographic parameters for planning purposes and resource allocation.  

The Lee and Carter model, also named LC herein after, is a demographic and statistical model that is used to project 

mortality rates. The equation describing the model is expressed as ln       =           +    ,                      (1.1)   

In the equation (1.1) x is the age and t is the time,   : Average age-specific pattern of mortality,  : Pattern of deviations 

from the age of profile as the kt varies,    : A time-trend index of general mortality level and finally   εt  is the residual 

term at age x and time t which has zero mean and constant variance that is E(εt  )=0 and var  (εt   )=  (Jenny, 2007). 

In forecasting by using ARIMA models, The input series for an ARIMA needs to be stationary, that is, it should have a 

constant mean, variance, and autocorrelation through time. Therefore, the series usually needs to be differenced first until 
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it is stationary. The number of times the series needs to be differenced to achieve stationary is reflected in the d parameter. 

In order to determine the necessary level of differencing, one should examine the plot of the data and autocorrelogram, 

that displays graphically and numerically the autocorrelation function (Haberman, 2015). 

2. LITERATURE RIVIEW 

2.1 Introduction: 

Life expectancy at birth has increased significantly in the least developed countries in recent years. The six-year average 

gain in life expectancy among the poorest countries, from 56 years in 2000-2005 to 62 years in 2010-2015, is roughly 

double the increase recorded in the rest of the world. (UN, 2015). 

Infant mortality rates in Rwanda were estimated at 92‰ in 1990 and reduced to 39‰ in 2012.The number of infant deaths 

was 30000 in 1990 and this number has reduced to 17000 in 2012.Under five mortality rate was estimated at 151‰ in 

1990 ,182‰in 2000 and reduced to 55‰ in 2012.in addition, under 5 deaths were estimated at 49,000 in 1990 and 24,000 

in 2012.(World Bank, United Nations &World Health Organization,2013). 

National Institute of Statistics of Rwanda is basing on the assumptions regarding fertility and mortality as components of 

population dynamics whereby three possible scenarios have been derived to project the Rwandan population from 2012 to 

2032. According to the high scenario, TFR would decrease from 4.0 children per woman in 2012 to 3.5 at the end of the 

period of projections, while the life expectancy at birth would increase from 62.6 years in 2012 for men and 66.2 years for 

women to 69.1 years for men and 72.3 years for women in 2032.  

According to the medium scenario, TFR would decrease from 4.0 children per woman in 2012 to 3.0 at the end of the 

period of projections, while the life expectancy at birth would increase from 62.6 years in 2012 for men and 66.2 years for 

women to 69.3 years for men and 73.4 years for women in 2032.Low scenario states that TFR would decrease from 4.0 

children per woman in 2012 to 3.5 in 2020, and to 2.5 by the end of the projection period, while the life expectancy at 

birth would increase from 62.6 years in 2012 for men and 66.2 for women to 70.6 years for men and 74.5 years for 

women in 2032. (NISR,2012) 

2.2 Evolution of Rwandan population   from 1978 to 2012: 

The First national census was conducted in 1978, the second in 1991, the  third in 2002 and  then the fourth in 2012. 

Rwanda is the most densely populated country in Africa, with about 10,515,973 Population of which 5,064,868 male and 

5,451,105 females. Data shows the sex ratio of 93 male per 100 females .The population density is then estimated at 415 

population /km
2
 (NISR,2012). 

Table 2.1: Population size and population growth 

Period Population size Annual average growth 

rate 

1978 4,831,527 3.1% from 1978 to 1991 

1991 7,157,551 1.2 from 1991 to 2002 

2002 8,128,553 2.6 % from 2002  to now 

2012 10,515,973 2.6% 

                        Source: Secondary data (NISR, 2012) 

Table 2.1 shows a decrease of annual average growth rate of the population from 1978 to 2012  

That rate decreased from 3.1 % in 1978 to 1.2% in 1991 and increased to 2.6% in 2012. 
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                               Source:  (NISR, 2012) 

Figure 2.1: Trend in population size 

The figure 2.1 shows an increase in total population  from 4831527 in 1978  up to 10515973 in 2012. 

 

Figure 1.2: Trend in Total Fertility rates 

Figure 2.2 shows a decreasing trend in Total Fertility rates where it is 8.4 in 1975 and 3.6 in  2020. This shows that TFR 

is projected at 3.6 children per woman in 2020( UN ,2015) 

2.3 Measurement of childhood mortality: 

Infant and child mortality rates are basic indicators of a country’s socioeconomic situation and quality of life. Estimates of 

childhood mortality are based on information collected in the birth history. The rates are estimated directly from the 

information in the birth history on a child’s birth date, survivorship status, and age at death for children who died; and are 

expressed per 1,000 live births. This information is used to directly estimate   mortality rates (NISR, 2015). 

Table 2.2 : Infant mortality and under five mortality in Rwanda 

Period Infant mortality rate Under 5 mortality  rate 

1990-1995 289 466 

2005 -2010 59 90 

2010-2015 49 73 

2015-2020 43 61 
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Table 2.2 shows that From 1990-1995: infant mortality was 289 and under 5 mortality 466, 2005-2010:Infant mortality 

rate was 59 and under 5 mortality 90 ,2010-2015 :IMR was 49 and U5MR 73,2015-2020:IMR is estimated at 43 and 

U5MR at 61( UN,2015 ) 

Infant mortality is still high in Rwanda. The Infant Mortality Rate (IMR) in 2012 is 48.6 ‰ and is higher among boys 

(53‰) than girls (44%). However the IMR has decreased a lot and more quickly during the last decade: from 139‰ in 

2002 to 48.6‰ in 2012. The decrease is more important among girls (67%) than among boys (63%). 

2.4. Overview of Lee Carter method in mortality forecasting: 

The basic LC model of age-specific death rates (ASDRs, and denoted m x,t is: ln      =           +    ,       (2.1) 

Here    describes the general age shape of the ASDRs, while    is an index of the general level of mortality. The 

coefficients      describe the tendency of mortality at age x to change when the general level of mortality    changes. 

When       is large for some x, then the death rate at age x varies a lot when the general level of mortality changes and 

when      is small, then the death rate at that age varies little when the general level of mortality changes . 

Over the past ten years, a number of new approaches have been developed for forecasting mortality using stochastic 

models such as Lee and Carter model. Recently, the Lee-Carter model became more and more popular and was applied 

for long-run forecasts of age specific mortality rates from many countries and time periods. This model is computationally 

simple to apply and it has given successful results for various countries, for instance USA, Canada , Japan and Italy. 

(Jenny, 2007). 

2.5 Leslie matrix models: 

The basic Leslie matrix model is deterministic. The parameters as survival   and reproductive rates are constant over 

time.Those parameters may change with many factors. For human population, the survival rates, especially among the 

elderly, will change with new medical advances or better feeding habits, and the fecundity rates will be affected by 

changing social attitudes toward marriage and family.If the parameter values for years are randomly generated from a 

specific probability distribution, the model will be stochastic.The size of the current population will play an important role 

in determining those parameters and the initial size has a lasting effect on the population's future chances of reproducing 

and surviving. 

2.6. Life expectancy: 

Life expectancy is an important parameter in determining the size of a population on account of a given birth rate and the 

number of people is proportional to it. 

The symbol     in a life table denotes the total number of years lived beyond agex by the survivorship group with l0 initial 

members. We have      ∫        
 

 
 =   +     +      +.                                                                          .(2.2) 

Let   
  denote the life expectancy of (x), i.e. the average number of years or the future life time lived by (x).  Therefore, 

life expectancy    
   can   be calculated as   

   =
  

  
                                                      (2.3) 

Life expectancy is an important indicator for the mortality level of a population. It has been widely used to measure 

overall mortality changes in a region or to compare mortality differences between cohorts. (Ofosuhene ,2009) 

2.7 Survival distributions: 

Let X be a nonnegative random variable representing the lifetime of an individual in a cohort or Population.  

All distribution functions related to the random variable X, unless stated otherwise, are defined over the interval [0, ∞). 

Let f(x) denote the probability density function (p.d.f) of X and let the cumulative distribution function (CDF) be      

       ∫       
 

 
                                                                                                (2.4) 

The probability of an individual surviving to age x is given by the survival function (s. f) 

             ∫       
 

 
                (2.5) 
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A very important concept in mortality modeling is the force of mortality (often referred to as the hazard function which is 

defined as:  

            
               

  
 = 

    

    
                          (2.6) 

The force of mortality specifies the instantaneous rate of death at age x, given that the individual survives up to age x. 

Any one of the functions f(x), F(x), s(x), or H(x) can be used to specify the distribution of X. It is easy to see that, given 

an expression for any one of the above 

Four functions, the other three can be derived. For example, in terms of the force of Mortality H(x), we have:      

  ∫       
 
  and F(x) = 1-S(x)                                                       (2.7) 

2.8 Effects of private income levels on mortality: 

Richer countries not only have richer people but in general ,they have larger and more effective social economic  

programs. Some indication of the importance of private living standards for international mortality differences may be 

gained by examining the importance of income distribution as a factor in those differences (Samuel.H,1980). 

It is reasonable to expect that mortality also responds nonlinearly to individual income levels, in which case the 

distribution of income within a nation should influence its aggregate level of mortality. In particular, suppose that the 

relation between individual income and life expectancy is log linear with respect to the following equation: 

  
 =α+βln                                                                                                   (2.8)    

In the equation (2.8)   
 is the life expectancy at birth in income group i,   stands for the level of income received by group 

i and then α and β are constants (Samuel .H,1980). 

The suggestion that private incomes are very crucial in determining national levels of life expectancy at a moment in time 

does not imply that changes in private incomes have been the dominant factor in mortality changes. Therefore , before 

trying to establish the role played by changes in private living standards in Less Developed Countries  mortality declines, 

it is useful to make an assessment of the causes of death responsible for those declines(Richard.A,1980). 

3.     METHODOLOGY 

3.1. Introduction: 

The Leslie matrix population model is a discrete and age dependent model. This matrix population model is widely used 

in demography in order to determine the growth of a population, as well as the age distribution within the population over 

time, where age class i corresponds to ages i-1≤ x ≤i. 

The Leslie model describes the dynamics of an age-structured population and is based on 3 main elements: 

1. The age x is a continuous variable starting from 0 and subdivided into discrete age classes, from 0 to w: the age class i 

thus corresponds to individuals whose age satisfy    -1     for            

2.Time is a discrete variable. We will denote by t the time step (also called the projection interval. 

3.The time step is exactly equal to the duration of each age class, meaning that from t to t+1 all individual go from class I 

to class i+1. 

The female population can be divided into several categories by age or by size in the simplest Leslie matrix model. If it's 

grouped by age, the group intervals are supposed to have equal length of time. 

We assume that the survival and fecundity rates of each category are constant over time and therefore not dependent on 

population density.(Gonze Didier  ,2015) 

 The Leslie matrix model is expressed as : 

A=[
                       

    
    

]             (3.1) 

In the equation (3.1) A represents the n × n Leslie matrix, or projection matrix. Fi  are fertility rates with i=1,….,n .  Leslie 

matrix is thus characterized by a first line with the fecundity of the different classes and a sub-diagonal with contains the 
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survival probabilities from one class to the next one. A Leslie matrix is non-negative, i.e. if m i,j denote the elements  (i, j) 

of M, then m i,j      i,j   (Gonze Didier,2012) 

3.2 Parameter estimation: 

Let us start by examining the survival probability, designated by the letter P. P is the probability that an individual in age 

class i will survive to age class i + 1. The small letter l gives 

the number of individuals in the population at a given time: P i = 

  

    
                         (3.2) 

3.3. Dominating eigenvalues and the properties of a stable vector: 

Since the Leslie model is an nxn matrix, it can be concluded that there are n possible eigenvalues and eigenvectors which 

satisfy the equation: AV =                                                         (3.3) 

In the equation (3.3)   is any eigenvalue and v is an eigenvector corresponding to  . Eigenvalues and eigenvectors are 

usually used to study the change in a population over time in a dynamical system. The aim is to determine the long term 

dynamics of the population. That is to say to demonstrate whether the population is increasing, decreasing or staying 

constant.After computing the eigenvalues from a projected matrix using the analytical method, the eigenvalue of interest 

is the one which is more positive in comparison with the others. 

This eigenvalue is called the eigenvalue of greatest magnitude, or the dominating eigenvalue or a latent root. 

The parameter   is very important because it defines the rate of population growth; the significance of the dominant 

eigenvalue is supported by the Peron Frobenius theorem for non-negative and irreducible matrices whose properties are 

below: 

1. There exists one eigenvalue that is greater than or equal to any of the others in magnitude, called the dominant 

eigenvalue of A, 

2. There exists an eigenvector such that its element are non-negative, 

3. The parameter   is greater or equals to the smallest row sum of A and less or equals to the largest row sum. 

The above properties, especially the last one, does not always satisfy the Markov theory  because there is a possibility that 

the values of Fi of the Leslie matrix may sometimes sum up to a value greater than 1 which can’t happen in Markov 

theory .After obtaining Eigen values from the equation:|A −   I| =  0                                                      (3.4)  

In the equation (3.4)    is an eigen value of Leslie matrix and I is the identity matrix.  

If                                                                           

If  =1, the population is said to be stationary. 

The annual rate of increase of the population will be given by the logarithm of the dominant eigen value , r = ln(λ).  

3.4 ARIMA model in forecasting mortality rates: 

Given a time series of data X
t
, the ARMA model is a tool for understanding and   predicting future values in series. The 

model consists of two parts, an autoregressive (AR) part and a moving average (MA) part as explained. The model is 

usually then referred to as the ARMA (p,q) model where p is the order of the autoregressive part and q is the order of the 

moving average part. In order that the ARMA model functions properly the roots of the AR (p) should be stationary. 

      ∑       
 
       ∑       

 
                (3.5) 

The equation (3.5) shows an ARMA (p, q) model where p refers to the model with p autoregressive terms and q moving 

average terms. This model contains the AR (p) and MA(q) models. ARMA models in general can, after choosing p and q, 

are fitted by least squares regression to find the values of the parameters which minimize the error term. It is generally 

considered good practice to find the smallest values of p and q which provide an acceptable fit to the data (Shahzad, 2007) 

These models are fitted to time series data either to better understand the data or to predict future points in the series. The 

model is generally referred to as an ARIMA (p,d,q)  model where p, d, and q are integers greater than or equal to zero and 

refer to the order of the autoregressive, integrated, and moving average parts of the model respectively. Since we already 
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discussed the AR and MA part in precise, the integrated aspect of the data leads to differencing of the series in order to 

achieve a subsequent stationary series fit ARMA process and together they are mentioned as ARIMA. 

The input series for an ARIMA needs to be stationary, that is, it should have a constant mean, variance, and 

autocorrelation through time.Therefore, the series usually needs to be differenced first until it is stationary. The number of 

times the series needs to be differenced to achieve stationarity is reflected in the d parameter. 

In order to determine the level of differentiating, we examined the plot of data and autocorrelogram that displays 

graphically and numerically the autocorrelation function (Haberman & Russolillo,2005). 

Data to be used in this study was  captured from the 4
th

 Rwandan population and housing census and demographic Health 

surveys conducted by National Institute of Statistics. That is to say, secondary data were used. 

4.    RESULTS AND DISCUSSION 

4.1 Introduction: 

This chapter presents the analysis and the discussion of the results obtained from the study. In this study, age specific 

fertility rates of females aged 15 to 49 and survival probabilities from life tables were used to construct Leslie matrix 

model for the purpose of estimating the annual growth rate which in turns may be used in population projection. The 

analysis was carried out using SPSS and E-views 4.0 statistical software. Here E-views 4.0 was used to plot various 

curves and analyze descriptive statistics, estimation, and forecasting of infant mortality and under 5 mortality rates taking 

observations from 2010 to 2011 and making  forecasts from 2012 to 2015. 

Table 4.1.Age Specific Fertility rates 

5-year age-group Age-Specific Fertility Rates ‰ Contribution (%) to the general fertility 

15-19 27 3.4 

20-24 150 18.7 

25-29 202 25.1 

30-34 185 23 

35-39 142 17.7 

40-44 79 9.8 

45-49 19 2.4 

The table 4.1: is showing age specific fertility rates and its contribution to the general fertility .it is 0.027‰ for female 

aged 15-19,0.150‰ for female aged 20-24 years ,0.202‰ for female aged 25-29years ,0.185‰ for female aged 30-34 

years ,0.142‰ for female aged 35-39,0.079‰ for female aged 40-44 years ,0.19‰ for female for female aged 45 -49 

years . 

Total fertility is computed as TFR=∑          
     Hence from the above table,  

TFR=5(0.027+0.15+0.202+0.185+0.142+0.079+0.019) = 5*804=4.02 .It means that total fertility in Rwanda is 4 children 

per woman. 

4.2 Leslie matrix model: 

A=





























973.098.000000

00983.00000

000985.0000

0000987.000

00000989.00

000000991.0

019.0079.0142.0185.0202.015.0027.0

      (4.1) 

The equation (4.1) is showing Leslie matrix model where the first  row shows ASFR for females. 
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Others non zero values are the survival probabilities and so ,the dominant eigen value for Leslie matrix  was found  

λ=1.0236 .The results  showed that  female  population is increasing at  growth rate is r= ln λ ,That is r =2.33%. 

This rate may be used to forecast the number of female population by Malthusian growth model where        
    

 

Figure 2.1: Log mortality rates for total population 

The figure 4.1.shows  logarithmic transformation of expected deaths for both sexes. However, Log transformations show 

that a number of expected deaths is observed in individual aged under 1 year and above 80 years old. Figure 4.2 was 

plotted based on 4 th  Rwandan Population and housing Census data (NISR,2012).  

4.2. General assessment of Lee Carter models: 

Recall the basic LC model of age-specific death rates (ASDRs, and denoted m x,t is: 

ln      =           +    ,            (4.2) 

Whereby    describes the general age shape of the ASDRs, while    is an index of the general level of mortality. The 

coefficients      describe the tendency of mortality at age x to change when the general level of mortality     changes. 

4.3 Methods used in Parameter estimation of Lee Carter model: 

To study the efficiency of the Lee-Carter method, the model's parameters may be estimated with the Singular Value 

Decomposition (SVD) approach and the Maximum Likelihood Estimate (MLE) In using the Lee-Carter approach, the 

time-series process for the mortality index (parameter kt) is of critical importance because the entire mortality forecast is 

determined by an extrapolation of kt. 

4.3.1 Singular value decomposition method (SVD): 

In order to obtain a unique solution for the system of equations of the model ln       =           +    ,   is set equal to 

the means over time of ln [m(x,t)] and    is constrained to sum to unity. The k(t) values sum to zero. Under this 

normalization,   is the proportion of the change in overall mortality on the logarithmic scale attributable to age x. To find 

a solution,    is subtracted from ln [m(x,t)] and the model becomes log-additive. 

4.3.2 Maximum likelihood estimation: 

Alternative means of fitting Lee carter model is specify a probabilistic mode whose parameters can be estimated by the 

method of maximum likelihood .Let Dxt  denote a random variable representing the death count at age x and time t  and 

dxt  be the corresponding number of deaths actually observed. Therefore, Dxt  can be approximated by a poisson 

distribution with mean λxt,where λxt=mxt Ext and Ext denotes the exposure to risk at age x and time t. 

Likelihood function for a single age time combination can be written as:L(d, λ)=
     

  
 and the full log likelihood is 

l=∑ ∑          ln        -     -ln        ]              (4.3) 
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Maximum likelihood estimates are the values of λxt that maximize the equation (4.3.)It is sufficient to maximize the 

equation ∑ ∑          ln        -    . If no restrictions on the form of λxt, then it is easy to verify that the equation 

∑ ∑          ln        -    .] attain  its maximum values when λxt =      . The results obtained in figure 4.1 showed that Lee 

carter methodology couldn’t be easily applied in forecasting the mortality trend index since age group and year to year 

based data on deaths were not available. 

4.4. ANALYSIS ON INFANT MORTALITY AND UNDER 5 MORTALITY RATES:  

4.4.1 Time plot of infant mortality rates from 2000 to 2015:  

The figure 4.2 is showing the time plot of Infant Mortality Rates (IMR) taking observations from 2000 to 2015  

 

Figure 4.2: Time plot of infant mortality rate 2000-2015 

Figure 4.2 is showing a decrease trend in infant mortality rates from 2000 to 2015 where a high IMR was observed in 

2002(139 deaths per 1000 live births).  

 

Figure 4.3: Descriptive statistics of infant mortality rates (‰) from 2000  to 2015 

Mean rate of infant mortality data is 73 and the dispersion is 33.7 .The highest rates in the series is 139 and the lowest 32. 

Results also shows that Jarque Bera 1.386323 and the probability is 0.4999. 
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4.4.2 Time plot of under 5 mortality rates: 

 

Figure 4.4: Time plot of Under 5 mortality rates from  2000 to 2015 

Figure 4.4 is indicating that under 5 mortality rate was high at 227‰ in 2002 whereas the lowest under 5 mortality rate is 

observed in 2014 and 2015.  

 

Figure 4.5 : Descriptive statistics of under 5 mortality rates (‰) (2000-2015) 

Figure 4.5 shows that the mean rate of under 5 mortality is 122‰. Data also shows a highest under 5 mortality rate of 

227‰   and the lowest of 50 ‰ and so the dispersion of data around the mean is 60. 

4.4.3. Unit root test of mortality rates by ADF test: 

Table 4.2 Unit root test for mortality rates for original data 

ADF Test Statistic -2.368987     1%   Critical Value* -4.7315 

      5%   Critical Value -3.7611 

      10% Critical Value -3.3228 
*MacKinnon critical values for rejection of hypothesis of a unit root. 

Augmented Dickey-Fuller Test Equation 

Dependent Variable: D(IMR) 

Method: Least Squares 

Sample(adjusted): 2001 2015 

Included observations: 15 after adjusting endpoints 

Variable Coefficient Std. Error t-Statistic Prob.   

IMR(-1) -0.554738 0.234167 -2.368987 0.0355 

C 69.74789 31.27310 2.230284 0.0456 

@TREND(2000) -4.070236 1.727944 -2.355538 0.0363 

R-squared 0.323958     Mean dependent var -5.000000 
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Table 4.2 is showing that infant mortality rates (IMR) data are not stationary at levels. In other words there is a unit root 

since ADF statistic -2.4 is not less than critical value of -3.7611 at 5%significance level. The first difference was 

necessary to make data stationary. 

Table 4.3 First differencing for infant mortality rates ((‰) 

ADF Test Statistic -5.381061     1%   Critical Value* -4.0681 

      5%   Critical Value -3.1222 

      10% Critical Value -2.7042 

*MacKinnon critical values for rejection of hypothesis of a unit root. 

Augmented Dickey-Fuller Test Equation 

Dependent Variable: D(IMR,2) 

Method: Least Squares 

Sample(adjusted): 2003 2015 

Included observations: 13 after adjusting endpoints 

Variable Coefficient Std. Error t-Statistic Prob.   

D(IMR(-1)) -1.366235 0.253897 -5.381061 0.0003 

D(IMR(-1),2) 0.238590 0.185386 1.286995 0.2271 

C -10.34843 2.601644 -3.977651 0.0026 

R-squared 0.764671     Mean dependent var -1.230769 

Adjusted R-squared 0.717605     S.D. dependent var 13.81891 

S.E. of regression 7.343490     Akaike info criterion 7.024680 

Sum squared resid 539.2685     Schwarz criterion 7.155053 

Log likelihood -42.66042     F-statistic 16.24682 

Durbin-Watson stat 0.762538     Prob(F-statistic) 0.000722 

We rejected a null hypothesis that there is a unit root in IMR because ADF Test statistic (-5.381) is less that critical value 

of -3.1222 at       Hence first differencing is making data stationary.ADF test also showed that original data of Under 

5 mortality rates were not stationary .Hence fist difference . 

Results are then presented in the table 4.4 which showed that data became stationary by first difference. 

Table 4.4: First differencing of Under 5 mortality rates data 

ADF Test Statistic -4.303207     1%   Critical Value* -4.0681 

      5%   Critical Value -3.1222 

      10% Critical Value -2.7042 

Method: Least Squares 

Sample(adjusted): 2003 2015 

Included observations: 13 after adjusting endpoints 

Variable Coefficient Std. Error t-Statistic Prob.   

D(U5MR(-1)) -1.310873 0.304627 -4.303207 0.0016 

D(U5MR(-1),2) 0.209699 0.219887 0.953666 0.3627 

C -17.04993 4.792534 -3.557602 0.0052 

R-squared 0.686459     Mean dependent var -1.192308 

Table 4.4 shows that the null hypothesis of existence of unit root is rejected at       The reason is that ADF test 

statistic (-4.3) is less than critical value of -3.12 at the said significance level  . In order words we reject the hypothesis of 

a unit root because |ADF|> Critical value in absolute value Therefore under 5 mortality rate data becomes stationary after 

first difference. 



                                                                                                                                        ISSN 2348-3156 (Print) 

International Journal of Social Science and Humanities Research  ISSN 2348-3164 (online) 
Vol. 4, Issue 2, pp: (144-159), Month:  April - June 2016, Available at: www.researchpublish.com 

  

Page | 155 
Research Publish Journals 

 

4.4.4 Autocorrelation Function and Partial Autocorrelation Function for mortality rates: 

Table 4.5. ACF AND PACF of mortality rates 

Lags ACF PACF Q-stat Probability 

1 0.856 0.856 14.077 0.000 

2 0.635 -0.367 22.377 0.000 

3 0.396 -0.144 25.850 0.000 

4 0.214 0.092 26.946 0.000 

5 0.050 -0.190 27.011 0.000 

6 -0.078 -0.033 27.185 0.000 

7 -0.177 -0.040 28.182 0.000 

8 -0.254 -0.127 30.498 0.000 

Table 4.5 is showing that ACF is dying off geometrically with increasing lag k. Hence low order autoregressive process. 

As PACF is very significantly positive of 0.856 at lag 1 and close to 0 thereafter. This is the fact that the patterns of 

autocorrelation can be captured by auto regression of order 1 AR (1). The probability value for all lags are 0 .Therefore 

ARIMA model to be used in mortality forecasting is ARIMA (p,d,q ) where p=1, d=1 and q=0 . 

Table 4.6.ARIMA models for Infant mortality rates from 2000 to 2011 

Dependent Variable: Xt 

Method: Least Squares 

Sample(adjusted): 2001 2011 

Included observations: 11 after adjusting endpoints 

Variable Coefficient Std. Error t-Statistic Prob.   

C -0.117490 0.500516 -0.234738 0.8197 

Xt(-1) 1.010629 0.112767 8.962094 0.0000 

R-squared 0.899238     Mean dependent var 4.355701 

Adjusted R-squared 0.888042     S.D. dependent var 0.369861 

S.E. of regression 0.123756     Akaike info criterion -1.178042 

Table 4.6 shows   Model:    =                      +  ,                                     (4.4)                                        

The model may be used to forecast for next period it mean from 2012 to 2015 since the coefficient of determination R
2
 is 

89.9%.. The equation in 4.1 shows that the model is statistically significant since 89.9% is high and this can also be 

explained by residual plots in figure 4.6. 

 

Figure 4.6: Residual plot for infant mortality rates from 2000 to 2011 

Figure 4.6 shows that Residual, Actual  and fitted plots of Infant mortality rates are showing a decreasing trend and so the 

model    =                     +   may be used to forecast next 4 years basing on sample from 2000 to 

2011.However, ex post forecasting of data is done where data is already available from 2000 to 2015 and the sample is 

taken to be able to forecast. 
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Table 4.7: ARIMA model of under 5 mortality rates from 2000 to 2011 

Dependent Variable: Yt 

Method: Least Squares 

Sample(adjusted): 2001 2011 

Included observations: 11 after adjusting endpoints 

Variable Coefficient Std. Error t-Statistic Prob.   

C -0.281125 0.444377 -0.632629 0.5427 

Yt(-1) 1.038933 0.089602 11.59492 0.0000 

R-squared 0.937257     Mean dependent var 4.857793 

Adjusted R-squared 0.930285     S.D. dependent var 0.405206 

S.E. of regression 0.106989     Akaike info criterion -1.469221 

Sum squared resid 0.103019     Schwarz criterion -1.396877 

Log likelihood 10.08072     F-statistic 134.4422 

Durbin-Watson stat 1.605815     Prob (F-statistic) 0.000001 

Table 4.7 shows ARIMA model for under 5 mortality rates of data from 2010 to 2011 is   =          

              +  .                                                        (4.5)  

In equation (4.5) the coefficient of determination R
2
=93.7% meaning that under 5 mortality rates are explained by lag 

values at 93.7%. Therefore, this model may be used to forecast U5MR from 2012 to 2015.  

4.5. Testing adequacy of ARIMA models for mortality forecasting: 

ARIMA models to be used in forecasting, there are criteria to be followed such as normality and no serial correlation in 

errors. However, Jarque Bera test and probabilities were used to show the normality in residuals. 

Then after,We have examined various measures of forecasting Errors, namely the mean absolute error (MAE); the root 

mean squared error (RMSE); and Thieles U to confirm the adequacy of models that were used. 

 

Figure 4.7: Normality test for ARIMA model of Infant Mortality rates 

The result of the Normality test shows that Jarque Bera value is 1.173470 with a probability of 0.556, this probability 

value, however is more than 0.05 meaning that we cannot reject the null hypothesis; instead we reject the alternative 

hypothesis and fail to reject the null hypothesis that the residual is normally distributed. Therefore residuals for infant 

mortality rates from 2000 to 2011 are normally distributed and may be used in forecasting   for next 4 years. 
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Figure 4.8: Normality test for ARIMA model of Under 5 mortality rates 

The results of the Normality test shows that Jarque Bera value is 1.164  with a probability of 0.558, this probability value 

is more than 0.05 meaning that we cannot reject the null hypothesis that the residual is normally distributed. Therefore 

residuals for under 5 mortality rates from 2000 to 2011 are normally distributed and may be used in forecasting  for next 4 

years that is from 2012 to 2015 

4.6. Ex post forecasting for mortality rates: 

 

Figure 4.9: Forecasting of Infant mortality rates from 2012 to 2015 

In ex post forecasting, it is clear that the model for infant mortality rate is good for forecasting because the root mean 

square error is very small (0.124456) and there is no serial correlation between error terms(probability value for observed 

R squared is 0.567>5%). 
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Results indicate various measures of forecasting Errors, namely the mean absolute error (MAE); the root mean squared 

error (RMSE); and Thieles U, the smaller the error the better the forecasting ability of that model accordingly. The Theil 

inequality coefficient always lies between zero and one, where zero indicates a perfect fit. 

 

Figure 4.10 Forecasting: Under 5 mortality rates forecasts from 2012 to 2015 

Figure 4.10 shows forecasts from 2012 to 2015  , the mean absolute error (MAE) which is 0.0636; the root mean squared 

error (RMSE) which is 0.068 show a higher predictive ability of the model     = -0.281125+1.038933       +   since they 

are very small. Therefore there is a decreasing trend of under 5 mortality rates by taking 4 observations from 2012 to 

2015.Results indicate various measures of forecasting Errors, namely the mean absolute error (MAE); the root mean 

squared error (RMSE); and Thieles U, the smaller the error the better the forecasting ability of that model accordingly. 

The Theil inequality coefficient always lies between zero and one, where zero indicates a perfect fit. Therefore, the figure 

4.10  shows a decreasing trend of under 5 mortality rates forecasted from 2012 to 2015. 

5.   CONCLUSION 

The female population growth rater=2.3% obtained from Leslie matrix is a good measure of population projection and 

therefore the population is increasing since λ>1. 

Mortality data was stationary at first diffence .In this model ARIMA model with p=1, d=1 and q=0 was used in 

forecasting infant mortality and under 5 mortality rates.. 

Autocorrelation Function for mortality rates was dying off geometrically with increasing lag value k. This meant a low 

order autoregressive process. As PACF was very significantly positive of 0.856 at lag 1 and close to 0 thereafter. This is 

the fact that the patterns of autocorrelation can be captured by auto regression of order 1 AR (1). The probability value for 

all lags are 0 .Therefore ARIMA model to be used in mortality forecasting is ARIMA (p,d,q ) where p=1, d=1 and q=0 . 

ARIMA models that were used in forecasting Infant Mortality rates and unde 5 mortality rates were       =          

        +               =                        +   respectively. Both ARIMA models have a higher predictive 

ability because of small root mean square errors where RMSE is 0.124456 for Infant mortality rates and 0.068576for 

under 5 mortality rates. 

Jarque Bera test and Probability values for residuals for both Infant mortality rate and under 5 mortality rates were 

       and so this was the evidence of  not rejecting  the Null hypothesis of normality in residuals. Therefore, ARIMA 

models used were helpful in forecasting. 

Forecasts showed a decreasing trend from 2012 to 2015 both for Infant Mortality and under 5 mortality rates. 
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